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Abstract

There is by now a substantial literature on spatio-temporal modeling. However, to date, there exists
essentially no literature which addresses the issue of process change from a certain time. In fact, if we
look at change points for purely time series data, the customary form is to propose a model involving
a mean or level shift. We see little attempting to capture a change in association structure. Part of the
concern is how to specify flexible ways to bridge the association across the time point and still ensure
that a proper joint distribution has been defined for all of the data. Introducing a spatial component
evidently adds further complication. We want to allow for a change-point reflecting change in both
temporal and spatial association. In this paper we propose a constructive, flexible model formulation
through additive specifications. We also demonstrate how computational concerns benefit from the
availability of temporal order. Finally, we illustrate with several simulated datasets to examine the
capability of the model to detect different types of structural changes.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Hierarchical model; Markov chain Monte Carlo; Separable covariance function; Stationary process

1. Introduction

The topic of this paper is a particular version of a change point problem. In fact, we are
interested in clarifying the notion of a change point in the context of a model for spatio-
temporal data. More precisely, the structure we seek is the following. Letsbe a location in
some region of interestD whereD ∈ Rp and lett be a time in an interval, say[0, T ]. Then
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if we consider the processY (s, t) for (s, t) ∈ D × [0, T ], we wantY (s, t) to come from
one spatio-temporal process fort � t0 and a different process fort > t0. t0 is referred to as
the changepoint and is assumed to be unknown. The change in process can involve change
in mean structure, a change in variability and also a change in association structure.
Allowing change in association structure leads to the primary technical issue which is

how to bridge the transition from the first process to the second. That is, how shall we
model the dependence betweenY (s, t) andY (s′, t ′) for s, s′ ∈ D whent � t0 andt ′ > t0?
The concern is to ensure that for any set of locationss1, . . . , sn inD and any set of locations
t1, . . . , tm in [0, T ] and anyt0 ∈ [0, T ], the covariance matrix for the resulting{Y (si, tj )}
will be positive definite. We return to this question below.
The change point problem has a rich history in the statistics literature and we offer only a

very brief review here. Such problems arise in most fields of study including, for example,
signal detection in engineering settings, response to extreme shocks of market prices in
financial and economic settings and change in reliability when manufacturing processes
move out of control. The earliest work treats the case of a changepoint in the mean for
a sequence of i.i.d. variables from a Gaussian distribution. Seminal rigorous results in
this regard appear in the classic paper ofChernoff and Zacks (1964). Subsequent work has
treated changes in regression structure and changes in variability aswell as thenon-Gaussian
case. See the paper ofZacks (1983)as well as those ofCsorgö and Horváth (1988)and
Krishnaiah and Miao (1988).
The change point problem can be formulated either sequentially or retrospectively. In the

former, we make a decision regarding the occurrence of a change based upon the data to
the present time. In the latter, we look back upon a collected sequence of data and try to
determine if a change point has occurred in the sequence and, if so, where it occurred. Our
approach below will be implemented within the Bayesian framework which requires the
retrospective formulation. Noteworthy Bayesian treatments of the i.i.d. case includeSmith
(1975), Raftery and Akman (1986)andCarlin et al. (1992).
Leaving the i.i.d. case in a change point setting naturally leads to viewing the data

sequence as a time series. Now the notion of a change point becomes a special case of
general temporal evolution of the model where distribution theory is allowed to change
with each time innovation. Examples include the threshold autoregressive (TAR) model
as in, e.g.,Tong (1983)and the more general functional coefficient autoregressive models
in Chen and Tsay (1993). In this regard, the change point version becomes a level shift
model. One mean operates before the change point, a different one after with no change
in the autoregressive structure (See, e.g.,Brockwell and Davis, 1991.) A different class of
temporal evolution models introduce stochastic volatility, i.e., temporal change in model
(variability), along with ARCH, GARCH, etc. specifications. See, e.g.,Taylor (1994)for a
broad review andKim et al. (1998)for a more statistical presentation as well asJacquier
et al. (1994)for such analysis in the Bayesian framework. Recently,Perreault et al. (2000)
use Markov chain Monte Carlo methods to fit a model of a hydrometerological time series
with a sudden change.
To connect the preceding discussion to the change point problem which is our interest

here, we extend the time series setting to envision a spatial process at eacht ∈ [0, T ]. That
is, rather than a single random variable at timet (or even a finite-dimensional multivariate
random variable at timet) we now have a stochastic process at eacht . Raftery (1994), in the
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context of modeling changing curves, offers brief discussion of changing spatial surfaces.
A very recent paper byEcker and Isakson (2004)employs space–time land value data to
model a land price mean shift as a function of parcel size. The authors introduce time in the
regression structure but incorporate spatial dependence in the error structure.
Here, we work with Gaussian process models for the data. Gaussian processes are, of

course, widely used and offer many advantages including ease of specification and con-
venient distribution theory (The latter is particularly helpful with regard to computational
needs for Bayesian model fitting as we elaborate below.) However, the model in Section 2.1
can be viewed as a hierarchical model with conditionally independent first stage Gaussian
specification. A different exponential family model for the first stage could be adopted (in
the spirit ofDiggle et al., 1998) but we have not pursued this here.
A last point concerns the treatment of the time scale. Do we view time as discrete or as

continuous? If time is discretized to say equally spaced points as in usual time series we
can write our model, in general, as

Yt (s) = �t (s) + Rt(s) + �t (s), t = 1, . . . , M. (1)

In (1), �t (s) denotes the mean structure,Rt(s) is the mean 0 residual spatial process at
time t and the�t (s) are i.i.d pure error terms. But then, what do we mean by a change
point model? We can easily introduce a change point in the mean surface, e.g.,�t (s) =
�(1)

t (s), t � t0, =�(2)
t (s), t > t0. Changes in variability can be introduced in either or both of

Rt or �t (s). However, for changes in the dependence structure we must employRt(s).
If we writeRt(s)=U(s)+�t , i.e., an additive form in space and time we can nowmodel

�t using time series change point ideas, as mentioned above. However, no change in spatial
association occurs over time so this form is less than what we seek.
Instead, we could considerRt(s) to be independent acrosst , assigning a distinct spatial

processmodel to eacht . In this way, we could observe temporal evolution of spatial pattern.
We could impose a change point structure by assuming theRt(s) all have the same spatial
process model fort � t0 and they have a different spatial model fort > t0. Regardless, such
modeling would not introduce any temporal dependence.
We could adopt a dynamic model forRt(s), i.e.,

Rt(s) = Rt−1(s) + �t (s), (2)

where in (2) the�t (s) are independent innovations of a spatial process. A change point
version of (2) would specify�t (s) to have one spatial processmodel fort � t0 and a different
spatial model fort > t0. This form of the model is straightforward to work with but implies
explosivebehavior for variance and covariance. That is,

Cov(Rt (s), Rt ′(s
′)) =



min(t, t ′)C(1)(s, s′), t, t ′ � t0,

tC(1)(s, s′), t � t0, t > t0,

t0C
(1)(s, s′)

+min(t − t0, t
′ − t0)C

(2)(s, s′), t, t ′ > t0,

whereC(1) andC(2) denote the pre- and post-change point covariance functions. This could
be remedied by introducing an auto-regression parameter�, |�| <1 beforeRt−1(s) in (2).

For this paper, we choose to formulate a stationary spatio-temporal process specification.
Hence we do not pursue (2) any further. In fact, in the sequel, we work witht being
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continuous and with stationary space time covariance functions of the formC(s−s′, t − t ′).
In Section 2, we define our class of models in a constructive way rather than through
existence arguments. We present the properties of these models and discuss model fitting
and inferential details. This discussion reveals an interesting distinction between the case
of a purely spatial model and one that introduces an additional white noise component.
We propose to permit change which can be in the mean, in the variability and in the

association structure. It is evident that small changes will be difficult to detect. This is the
case in all change point settings; often a minimum magnitude of change is specified. It is
also clear that change of one sort can be difficult to distinguish from change of another sort.
For example, a change in mean may be difficult to distinguish from a change in variability.
A change in variability may be difficult to distinguish from a change of rate of decay in
spatial association. A change in temporal decay in association may be difficult to separate
from a change of spatial decay in association. Obviously, a large number of locations and
a large number of time points will be needed to successfully identify changes. To clarify
these issues a bit, in Section 3 we present a small illustrative simulation study. In Section
4, we conclude with some discussion and extensions.

2. An additive spatio-temporal change point model

2.1. The general model

In general, suppose locationss belong toRd , thed-dimensional Euclidean space and
timepointst belong to the positive real lineR+. We assume the process to be multivariate
and finite second moment. Hence the process is a collection of random variablesY (s, t) on
Rd × R+. We denote the covariance of the process by Cov(Y (s, t), Y (s′, t ′)) for s, s′ ∈ Rd

andt, t ′ ∈ R+.
For a weakly stationary process we employ separable covariance functions, i.e.,

C(s, s′, t, t ′) = �2�1
�(s− s′)�2

	(t − t ′), where�1
� and�2

	 are valid correlation functions in

Rd andR1. For an isotropic process we write

C(s, s′, t, t ′) = �2�1
�(‖s− s′‖)�2

	(|t − t ′|), (3)

where(‖s−s′‖) is the Euclidean distance between the two locations. The form in (3) is dis-
cussed inMardia andGoodall (1993). See alsoBanerjee andGelfand (2002). Non-separable
forms are available. See, e.g.,Cressie and Huang (1999)andGneiting (2002). In our ex-
amples below, we illustrate with the exponential class where�1

�(‖
s‖) = exp(−�‖
s‖),
�2

	(|
t |) = exp(−	|
t |). More flexible versions including the Matèrn class and the power
exponential (Stein, 1999) could beadopted.Our processeswill beGaussianunlessotherwise
stated.
Our approach to the problem is to view a spatio-temporal change point model as one

which has amean structure that depends only on the time (i.e., no covariates at themoment)
and an additive mean 0 spatio-temporal error structure that changes from before to after the
change point.
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Letting t0 denote the change point, the probability model can be described as follows:

Y (s, t)=�t + U(s, t) + W(s, t) + �(s, t), t � t0

= �t + U(s, t) + V (s, t) + �′(s, t), t > t0, (4)

where�(s, t)
i.i.d.∼ N(0, �21), �′(s, t) i.i.d.∼ N(0, �22). Here, we assume thatU(s, t) follows a

spatio-temporal processwith covariance function�2
1�

1
�1

(s−s′)�2
	2

(t − t ′), W(s, t) follows

a spatio-temporal process with covariance function�2
2�

1
�2

(s−s′)�2
	2

(t − t ′) andV (s, t) fol-

lows a spatio-temporal processwith covariance�2
3�

1
�3

(s−s′)�2
	3

(t −t ′).All three processes
are assumed independent of each other and independent of the�’s. The sumU(s, t)+W(s, t)
denotes the pre-change spatio-temporal random effect, the sumU(s, t) + V (s, t) denotes
the post-change effect. Then, given the{�t } the resulting covariance structure is

Cov(Y (s, t), Y (s′, t ′)) =




�2
1�

1
�1

(s− s′)�2
	1

(t − t ′)
+�2

2�
1
�2

(s− s′)�2
	2

(t − t ′), t � t0, t ′ � t0,

�2
1�

1
�1

(s− s′)�2
	1

(t − t ′), t � t0, t ′ > t0,

�2
1�

1
�1

(s− s′)�2
	1

(t − t ′)
+�2

3�
1
�2

(s− s′)�2
	2

(t − t ′), t > t0, t ′ > t0.

(5)

Correlations can be calculated directly from (5). When botht and t ′ are � t0 or both
t and t ′ are> t0, they emerge as variance weighted convex combinations of correlations
associated with the component processes. Whent is � t0 andt ′ > t0 we obtain a plausible
transition.
The role of theU(s, t) process in (4) is to accommodate dependence between measure-

ments beforet0 and aftert0 as evidenced in (5). TheW(s, t) andV (s, t) represent the
pre- and post-change point adjustments to the spatio temporal model. As a result, neither
the pre-change point or post-change point processes for theY ’s have separable covariance
structure. In this regard, the independence assumption sacrifices little flexibility. Also, the
constructice form in (4) ensures that for any set of locations and time points, the resulting
joint covariance matrix will be positive definite. With respect to the�t , we set�t = �1,
t � t0, and�t = �2, t > t0. In the presence of covariate information at each location more
flexible choices might be�(s, t) = XT(s)�1, t � t0, and�(s, t) = XT(s)�2, t > t0.
Let us defineM(t) to be the largestj such thatM(tj )� t . Thus,M(t0) is the num-

ber of time points before the change-point andM − M(t0) the number after. LetWT
t− =

(WT
t1
, WT

t2
, . . . , WT

t0
) andWT

t+ = (WT
t0+1, W

T
t0+2, . . . , W

T
M). Analogously, we partitionV T =

(V T
t− , V T

t+), UT= (UT
t− , UT

t+), andY T= (Y T
t− , Y T

t+). Hence, the vectorU has anMN ×MN

covariance matrix�2
1R(	1) ⊗ R(�1). Similarly, V hasMN × MN covariance matrix

�2
2R(	2) ⊗ R(�2) andW hasMN × MN covariance matrix�2

3R(	3) ⊗ R(�3). Here,
((R(�l )))i,i′ = �1

�l
(si − s′

i ) and((R(	l )))j,j ′ = �2
	l

(tj − t ′j ).
Also,Wt− has anM(t0)N×M(t0)N spatial covariancematrix�2

2R
M(t0)(	2)⊗R(�2)and

Vt+ has an(M −M(t0))N × (M −M(t0))N spatial covariance matrix�2
3R

M−M(t0)(	3)⊗
R(�3), whereR

M(t0)(	2) denotes the upper leftM(t0)N × M(t0)N matrix ofR(	2) and
RM−M(t0)(	3) denotes the lower rightM(t0)N × M(t0)N matrix ofR(	3).
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2.2. Model fitting and inferential details

Wework in dimensiond=2. For simplicity, weassumeaconstantmean�1 over the region
of interestD before the change point and mean�2 over the region after the change point.
Letting=(�1,�2,�

2
1,�

2
2,�1,�2,�3,	1,	2,	3, t0), the conditional log-likelihoodgiven

U , W andV and the change pointt0 is

l(�1,�2, �
2
1, �

2
2, t0; U, W, V, Y )

∝ −M(t0)N

2
log(�21) − (M − M(t0))N

2
log(�22)

− (Yt− − �11− Ut− − Wt−)T(Yt− − �11− Ut− − Wt−)/2�21
− (Yt+ − �21− Ut+ − Vt+)T(Yt+ − �21− Ut+ − Vt+)/2�22. (6)

Incorporating the distribution ofU, V andW with a prior� for  the full Bayesian model
becomes

log(f (U, V, W, |Y ))

∝ l(�1,�2, �
2
1, �

2
2, t0; U, W, V, Y ) − {UTR(	1)

−1

⊗ R(�1)
−1U/2�2

1} − {WTR(	2)
−1 ⊗ R(�2)

−1W/2�2
2} − {V TR(	2)

−1

⊗ R(�2)
−1V/2�2

3} − NM/2 log(�2
1) − NM/2 log(�2

2) − NM/2 log(�2
3)

− M/2 log|R(�1)| − N/2 log|R(	1)| − M/2 log|R(�2)|
− N/2 log|R(	2)| − M/2 log|R(�3)| − N/2 log|R(	3)| + log(�()). (7)

Customarily, we assume prior independence for the components of. Then we would
propose proper fairly non-informative priors for these components, e.g., vague normal for
the �s, vague inverse Gamma for�2s and�2s, e.g.,�2

l ∼ IG(2,�l ), l = 1,2,3, �21 ∼
IG(2,�4), �

2
2 ∼ IG(2,�5), and Gamma’s for	l and�l . For t0 we assume that 0< t0 < tM ,

noting thatt0 < t1meansnochangepoint. In fact,wecandiscretize theparameter space fort0
to {t1, t2, . . . , tM} defining “t0= tj ” to betj−1< t0� tj . This follows because the likelihood
does not change ast0 varies over this interval. Therefore, we can use a discrete prior
pt0; t0 = t1, t2, . . . , tM . The full conditional distribution fort0 is discrete with probabilities
proportional topt times (6) evaluated att0 = t .
Fitting of model (5) can only be attempted using Gibbs sampling. In principle, we could

marginalize (4) toL(�1,�2, �
2
1, �

2
2, t0; Y ) by integrating over theU, V and theW thereby

substantially reducing dimensionality. However, if we retain the intermediaryU, V, W , the
model in (6) can be viewed as a hierarchical specification. If we fit themodel hierarchically,
i.e., by generatingU, V , andW from their full conditional multivariate normal distributions
in the Gibbs sampler then the computations are easier to manage. The full conditionals are
supplied in Appendix A. We note that the full conditionals for�1 and�2 follow normal
distributions while the�2’s and�2’s follow inverse Gammas. The full conditionals of the
	 and the�’s are awkward. However, the reader can verify from the appendix that, in
updating the�’s and the	’s we can preserve the Kronecker forms in (5). Rather than
having to work withMN × MN matrices, we can work withM × M andN × N matrices.
So we use a Metropolis Hastings update in this context. The appendix reveals that the full
conditional distribution forU, W andV do necessitate working withMN × MN matrices
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but the required normal draws canbemade throughCholesky decomposition of the available
inversematrix.As a result, the output of theMCMC fitting will provide essentially posterior
samples∗

l , l = 1,2, . . . , L from f (|Y).

2.3. The purely spatial model

Inclusion of the white noise terms�(s, t) in (4) enables the model to incorporate error
which is non-spatial. Such heterogeneity is usually attributed to measurement error or
microscale variability. Evidently, themodel in (4) can be specified without such error terms,
i.e.,

Y (s, t)=�1 + U(s, t) + W(s, t), t � t0

= �2 + U(s, t) + V (s, t), t > t0. (8)

So, we are rid of the parameters�21 and�
2
2 in the model. Hence, we have= (�1,�2,�

2
1,�

2
2,

�1,�2,�3,	1, 	2,	3, t0). Now we could use the conditional log-likelihood givenU and
t0 which takes advantage of the independence ofW andV to yield

l(�1,�2,�
2
1,�

2
2,�2,�3,	2,	3; Y, U)

∝ −{(Yt− − �11 − Ut−)TR(	2)
−1 ⊗ R(�2)

−1(Yt− − �11 − Ut−)/2�2
2}

− {(Yt+ − �21− UT
t+)R(	3)

−1 ⊗ R(�3)
−1(Yt+ − �21 − Ut+)/2�2

3}
− M(t0)N/2 log(�2

2) − (M − M(t0))N/2 log(�2
3) − M(t0)/2 log|R(�2)|

− N/2 log|R(	2)|(M − M(t0))/2 log|R(�3)| − N/2 log|R(	3)|. (9)

Notice that there is no way to condition so that theY ′s are independent as in (4). Adding
the distribution ofU , with a prior on, �() the full model yields

log(f (U, |Y )) ∝ − {(Yt− − �11 − Ut−)TR(�2)
−1 ⊗ R(	2)

−1(Yt− − �11
− Ut−)/2�2

2} − {(Yt+ − �21 − Ut+)TR(�3)
−1 ⊗ R(	3)

−1

× (Yt+−�21−Ut+)/2�2
3}−{UTR(�1)

−1 ⊗ R(	1)
−1U/2�2

1}
− M/2 log|R(�1)|−N/2 log|R(	1)|−M(t0)/2 log|R(�2)|
− N/2 log|R(	2)| − (M − M(t0))/2 log|R(�3)|
− N/2 log|R(	3)| − MN log(�1) − M(t0)N/2 log(�2

2)

− (M − M(t0))N/2 log(�2
3) + log(�()). (10)

The full conditional distributions associatedwith (10) are provided inAppendix B.Again,
the�’s and the	’s can be updated retaining the Kronecker form.Again, the full conditional
distribution forU is normal involving anMN × MN covariance matrix.

3. A simulation study

We undertake a modest simulation study in order to see how well our model is able to
identify different sorts of changes. In fact, as noted in the introduction, there aremany types
of changes that can be introduced, e.g., mean change, variance change, association change,
spatial correlation change but no temporal association change or vice versa.Moreover,more
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than one of these changes could occur att0. In addition, what should the magnitude of these
changes be? The price of a flexible model such as (4) is that a thorough simulation study is
not feasible.
So instead we consider four different simulations, each with a particular objective. We

generate 2400 points for this study under each of the four simulations. In particular, we set
the number of spatial pointsN =40 and the number of temporal pointsM =60. The spatial
locations are selected at random from the[0,10] × [0,10] square where as the time points
are selected at random from the[0,10] interval.
We keep the change pointt0 fixed att0 = 4.614, which happens to be the thirtieth largest

observation from the60points thatwe randomly selected from the[0,10] interval. In the first
simulation we study the effect of change in decay of the spatial and temporal association.
Letting the variances and the means remain the same, we let the spatial and the temporal
association parameters change across the change point. That is, in (4), we let the decay
of spatial and temporal association ofW(s, t) andV (s, t) differ considerably. Effectively,
we increased both the spatial range and the temporal range by a multiple of 4. In the third
simulation, our objective is similar to the first simulation. But here we study the change in
decay of the spatial and temporal association, along with a mean shift. Our objective in the
second simulation is to study the effect of a change in variance, in fact, a four fold increase in
variance. So we keep the decay parameters ofW(s, t) andV (s, t) the same and assume zero
mean shift across the change point. And finally, our objective of the fourth simulation, is
similar to that of the second simulation, except that along with studying the effect of change
in variance we also look at the change in mean or level shift across time. In choosing the
decay parameters we keep in mind that the range of the spatial and the temporal processes
involved are reasonable. We also keep in mind that the variance corresponding to the noise
in (4) is not too large (which could obscure other changes) or too small (which leads to
unstable computation if we are close to (8)) compared to the spatio-temporal variances. To
quantify the objectives, we present inTable 1the values of the parameters used in each
simulation.
The summaries of the computational findings are given below. As a summary of the

posterior distributions, obtained from running a Gibbs sampler, inTable 2we display the
median, the 2.5th and 97.5th percentile for each component of. The original values of the
parameters are also presented.
From the results of the output inTable 2, we can see that the posterior inference has

captured all components of in all simulations except�1 being slightly negative and�2
being slightly positive.
Fig. 1 shows a histogram of the posterior samples for the change point for each of the

simulations. Noteworthy is the concentration of these histograms about the true value.Fig.
2 chooses a location (s= (5,5), without loss of generality) and for a fine grid in the time
scale plots the posterior predictive mean vs.t along with .95 predictive intervals for each
of the simulations. The mean shift in simulations 3 and 4 is clearly detected and the change
is to essentially the correct magnitude. Note also, the widening of the predictive intervals
for simulations 3 and 4, in accordance with the increase in spatial variance from before the
change point to after. For the same location and the same grid,Fig. 3plots the variance of
the posterior predictive distribution for an observation at this location. The variance change
is clearly detected and the overall process variances are of the correct magnitudes.
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Table 1
The parameter values across the four simulations

Simulation 1 Simulation 2 Simulation 3 Simulation 4

�1 0 0 0 0
�2 0 0 5 5
�21 1 1 1 1
�22 1 4 1 4
�23 1 1 1 1
�21 1 1 1 1
�22 1 1 1 1
	1 3 3 3 3
�1 3 3 3 3
	2 1.5 3 1.5 3
�2 1.5 3 1.5 3
	3 6 3 6 3
�3 6 3 6 3
t0 4.614 4.614 4.614 4.614

Finally, in Figs. 4–7we attempt to reveal a change in association structure. Change in
covariance will be masked by change in�2

2 and�2
3. In fact, results in (5) indicate that

process correlations arise as variance weighted combinations of correlations associated
with the component processes. Hence, if	2 = 	3 but different from	1 and/or�2 = �3
but different from�1, i.e., “no change” in association structure, a change from�2

2 to �2
3

will imply a change in correlation forY (s, t) acrosst0. So, change in association structure
in the presence of change in variance structure will be difficult to detect. Due to assumed
isotropy givens we only need fixs′ to determine‖s − s′‖ and then select a�t . Then,
for a fixedsands′ we obtained the posterior correlation and posterior covariance between
Y (s, t) andY (s′, t +�t) for the same grid oft values as above. In particular we sets=(5,5)
ands′ = (5.14,5.14) so that‖s − s′‖ = .2 in Figs. 4and6. We also set�t = .1. And in
Figs. 5and7 we sets′ = (5.071,5.071) so that‖s− s′‖ = .1. The values of‖s− s′‖ and
�t ensure non-negligible association in space and time. We note that inFigs. 4and5 the
posterior correlations decrease after the change point in simulations 1 and 3 and increase
in simulations 2 and 4. Likewise inFigs. 6and7 the posterior covariance decrease after the
change point in simulations 1 and 3 and increase in simulations 2 and 4. Consistent with the
foregoing discussion we see a change point in association structure in all four simulations.

4. Discussion and extensions

Change point detection for a spatio-temporal process is a complex problem. One can en-
vision change inmean structure, change in variance structure and change in association.We
have attempted only a rudimentary investigation here, working with a convenient construc-
tive model form. We have demonstrated through simulation that changes can be detected.
However small changes will be difficult to reveal and concurrent changes of different types
may be difficult to separate and may even mask each other. The simulation study could be
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Table 2
The posterior sample summaries of the parameters compared with the original values

Simulation 1 Simulation 2 Simulation 3 Simulation 4

�1 −0.178 (−0.272, −0.084) −0.141 (−0.222, −0.058) −0.176 (−0.271, −0.084) −0.139 (−0.221, −0.057)
0 0 0 0

�2 0.208 (0.114,0.302) 0.174 (0.079,0.270) 5.210 (5.114,5.303) 5.174 (5.079,5.270)
0 0 5 5

�21 0.954 (0.583,1.818) 0.764 (0.383,1.206) 0.996 (0.569,1.984) 0.685 (0.404,1.004)
1 1 1 1

�22 1.062 (0.586,1.960) 0.627 (0.335,1.003) 1.157 (0.750,2.014) 0.697 (0.417,1.105)
1 1 1 1

�23 1.112 (0.816,2.221) 4.321 (3.372,6.398) 0.885 (0.501, 1.404) 3.778 (2.962, 5.387)
1 4 1 4

�21 0.796 (0.632,1.019) 0.691 (0.439,1.139) 0.692 (0.498,1.009) 0.701 (0.449,1.196)
1 1 1 1

�22 1.247 (0.778,2.036) 0.801 (0.626,1.306) 0.771 (0.563,1.162) 0.767 (0.544,1.233)
1 1 1 1

	1 4.173 (2.274,5.553) 2.750 (1.882,6.173) 3.062 (2.414,4.419) 3.581 (2.077,7.322)
3 3 3 3

�1 3.564 (2.117,7.407) 2.255 (1.747,3.632) 2.119 (1.732,3.306) 3.542 (2.276,4.772)
3 3 3 3

	2 2.681 (1.357,5.686) 2.724 (1.872,4.623) 1.513 (1.179,2.317) 2.018 (1.514,4.132)
1.5 3 1.5 3

�2 2.293 (1.431,5.375) 2.458 (1.196,5.206) 1.427 (1.171,2.064) 2.958 (1.903,5.196)
1.5 3 1.5 3

	3 5.007 (2.685,12.372) 2.224 (1.398,4.045) 3.108 (2.198,7.096) 2.172 (1.676,4.465)
6 3 6 3

�3 5.595 (2.782,9.139) 2.236 (1.628,4.177) 7.201 (3.073,14.191) 2.118(1.353,5.150)
6 3 6 3

t0 4.787 (1.538,8.368) 4.987 (1.368,8.938) 4.614 (2.574,5.380) 4.614 (2.594,5.544)
4.614 4.614 4.614 4.614

extended to “what if” scenarios where we simulate under one change point model and fit
under another. The foregoing caveats may be even more appropriate.
Alternative constructions could be offered; further investigation for a discrete time scale

could be undertaken. However, in our limited experience, most critical is to have obser-
vations at a large number of locations and a large number of time points. But, working
with process models this introduces dramatically increased computational burden associ-
ated with evaluation of the likelihood and/or the joint distribution of the spatial random
effects.

Appendix A. Full conditional distribution theory for the additive model
incorporating random noise

Here, we employ the full conditional distribution employed in the Gibbs sampling to fit
this model. We suppress the variables being conditioned on.

for �1,�1 ∼ N(�̃1,�
2
�,1) with �2

�,1 = �21/M(t0)N
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Fig. 1. Posterior histograms fort0.

and

�̃1 = �2
�,11

T(Yt− − Ut− − Wt−)/�21;
for �2,�2 ∼ N(�̃2,�

2
�,2) with �2

�,2 = �22/(M − M(t0))N

and

�̃2 = �2
�,21

T(Yt+ − Ut+ − Vt+)/�22;

for �2
1,�

2
1 ∼ IG

(
2+ MN

2
,�1 + UTR(�1)

−1 ⊗ R(	1)
−1U/2

)
;

for �2
2,�

2
2 ∼ IG

(
2+ NM(t0)

2
,�2 + WTR(�2)

−1 ⊗ R(	2)
−1W/2

)
;

for �2
3,�

2
3 ∼ IG

(
2+ N(M − M(t0))

2
,�3 + V TR(�3)

−1 ⊗ R(	3)
−1V/2

)
;

for �1, f (�1)

∝ exp{−(UTR(�1)
−1 ⊗ R(	1)

−1U/2�2
1) − �1��1

}���1−1

1 /|R(�1)|
M
2 ;



160 A. Majumdar et al. / Journal of Statistical Planning and Inference 130 (2005) 149–166

 -10

 -5

0

5

10

time

Y
_p

re
d

Simulation 1

 -10

 -5

0

5

10

time

Y
_p

re
d

Simulation2

 -10

0 2 4 6 8 10 0 2 4 6 8 10

0 2 4 6 8 100 2 4 6 8 10

 -5

0

5

10

15

Y
_p

re
d

time

Simulation3

 -10

 -5

0

5

10

15

time

Y
_p

re
d

Simulation 4

Fig. 2. Posterior predictive mean at locations = (5,5) and associated .95 predictive intervals acrosst for each
simulation.

for 	1, f (	1)

∝ exp{−(UTR(�1)
−1 ⊗ R(	1)

−1U/2�2
1) − 	1�	1

}	�	1−1

1 /|R(	1)|
N
2 ;

for �2, f (�2)

∝ exp{−(WTR(�2)
−1 ⊗ R(	2)

−1W/2�2
2) − �2��2

}���2−1

2 /|R(�2)|
M
2 ;

for 	2, f (	2)

∝ exp{−(WTR(�1)
−1 ⊗ R(	1)

−1W/2�2
2) − 	2�	2

}	�	2−1

2 /|R(	2)|
N
2 ;

for �3, f (�3)

∝ exp{−(V TR(�3)
−1 ⊗ R(	3)

−1V/2�2
3) − �3��3

}���3−1

3 /|R(�3)|
(M)
2 ;

for 	3, f (	3)

∝ exp{−(V TR(�3)
−1 ⊗ R(	3)

−1V/2�2
3) − 	3�	3

}	�	3−1

3 /|R(	3)|
N
2 ;
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Fig. 3. Variance of posterior predictive distribution for an observation at locations = (5,5) acrosst for each
simulation.

for �21, �
2
1 ∼IG

(
2+ M(t0)N

2
,�4 + (Yt− − �11 − Ut− − Wt−)T

×(Yt− − �11 − Ut− − Wt−)/2

)
;

for �22, �
2
2 ∼IG

(
2+ (M − M(t0))N

2
,�5 + (Yt+ − �21− Ut+ − Vt+)T

×(Yt+ − �21 − Ut+ − Vt+)/2

)
;

for U, U ∼ N(�̃U ,��
U ) with

��
U = (D + R(�1)

−1 ⊗ R(	1)
−1)−1/�2

1,

whereD is aMN × MN diagonal matrix with the firstM(t0)N diagonal entries 1/�21 and
the next(M − M(t0))N diagonal entries 1/�22, i.e.,D depends on�21, �

2
2 andt0.

�̃U = ��
U ((Yt− − �11 − Ut− − Wt−)T/�21, (Yt+ − �21− Ut+ − Vt+)T/�22)

T;
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Fig. 4. Posterior correlation betweenY (s, t) andY (s′, t) for s= (5,5) ands′ = (5.14,5.14), t ′ − t = .1, plotted
vs. t .

for W, W ∼ N( ˜�W,��
W ) with

��
W = (D + R(�2)

−1 ⊗ R(	2)
−1/�2

2)
−1

˜�W = ��
W (YM(t0) − �11 − UM(t0) − WM(t0))/�

2
1;

for V, V ∼ N(�̃V ,��
V ) with

��
V = (D + R(�3)

−1 ⊗ R(	3)
−1/�2

3)
−1

and

�̃V = ��
V (Yt+ − �21 − Ut+ − Vt+)/�22.

Appendix B. The distribution theory for the additive model without random noise

The full conditional distributions for the parameters arising under (10) are as follows:

for �1,�2 ∼ N(�̃1,�
2
�,1) with �2

�,1 = �2
2/(1

TR(�2)
−1 ⊗ R(	2)

−11)
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Fig. 5. Posterior correlation betweenY (s, t) andY (s′, t) for s= (5,5) ands′ = (5.071,5.071), t ′ − t = .1, plotted
vs. t .

and

�̃1 = �2
�,11

TR(�2)
−1 ⊗ R(	2)

−1(Yt− − Ut−)/�2
2;

for �2,�2 ∼ N(�̃2,�
2
�,2) with �2

�,2 = �2
3/(1

TR(�3)
−1 ⊗ R(	3)

−11);
and

�̃2 = �2
�,21

TR(�3)
−1 ⊗ R(	3)

−1(Yt+ − Ut+)/�2
3;

for �2
1,�

2
1 ∼ IG

(
2+ MN

2
,�1 + UTR(�1)

−1 ⊗ R(	1)
−1U/2

)
;

for �2
2,�

2
2

∼ IG(2+ M(t0)N/2,�2 + (Yt− − �11 − Ut−)TR(�2)
−1 ⊗ R(	2)

−1

× (Yt− − �11 − Ut−)/2);
for �2

3,�
2
3

∼ IG(2+ (M − M(t0))N/2,�3 + (Yt+ − �21 − Ut+)TR(�3)
−1 ⊗ R(	3)

−1

× (Yt+ − �21 − Ut+)/2);
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Fig. 6. Posterior covariance betweenY (s, t) andY (s′, t) for s= (5,5) ands′ = (5.14,5.14), t ′ − t = .1, plotted
vs. t .

for �1, f (�1) ∝exp{−(UTR(�1)
−1 ⊗ R(	1)

−1U/2�2
1) − �1��1

}
×�

��1−1

1 /|R(�1)|
M
2 ;

for 	1, f (	1) ∝exp{−(UTR(�1)
−1 ⊗ R(	1)

−1U/2�2
1) − 	1�	1

}
×	

�	1−1

1 /|R(	1)|
N
2 ;

for �2, f (�2) ∝exp{−((Y − �11 − U)TR(�2)
−1 ⊗ R(	2)

−1

×(Y − �11 − U)/2�2
2) − �2��2

}���2−1

2 /|R(�2)|
M(t0)
2 ;

for 	2, f (	2) ∝exp{−((Yt− − �11 − Ut−)TR(�2)
−1 ⊗ R(	2)

−1

×(Yt− − �11 − Ut−)/2�2
2) − 	2�	2

}	�	2−1

2 /|R(	2)|
N
2 ;

for �3, f (�3) ∝exp{−((Yt+ − �21 − Ut+)TR(�3)
−1 ⊗ R(	3)

−1

×(Yt+ − �21− Ut+)/2�2
3) − �3��3

}���3−1

3 /|R(�3)|
M−M(t0)
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Fig. 7. Posterior covariance betweenY (s, t) andY (s′, t) for s= (5,5) ands′ = (5.071,5.071), t ′ − t = .1, plotted
vs. t .

for 	3, f (	3) ∝exp{−((Yt+ − �21 − Ut+)TR(�3)
−1 ⊗ R(	3)

−1

×(Yt+ − �21 − Ut+)/2�2
3) − 	3�	3

}	�	3−1

3 /|R(	3)|
N
2 .

for U, U ∼ N( ˜�U,��
U ) with

��
U = (R̃ + R(�1)

−1 ⊗ R(	1)
−1)−1/�2

1,

whereR̃ is aMN × MN block diagonal matrix with the firstM(t0)N × M(t0)N diagonal
blockR(�2)

−1 ⊗ R(	2)
−1 and the next(M − M(t0))N × (M − M(t0))N diagonal block

R(�3)
−1 ⊗ R(	3)

−1.
Finally, ˜�U =��

U (R(�2)
−1⊗R(	2)

−1(Yt− −�11−Ut− −Wt−)T, R(�3)
−1⊗R(	3)

−1

(Yt+ − �21− Ut+ − Vt+)T)T.
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